Dynamics in a Noncommutative Space

نویسنده

  • S. N. Bose
چکیده

We discuss the dynamics of a particular two-dimensional (2D) physical system in the four dimensional (4D) (non-)commutative phase space by exploiting the consistent Hamiltonian and Lagrangian formalisms based on the symplectic structures defined on the 4D (non-)commutative cotangent manifolds. The noncommutativity exists equivalently in the coordinate or the momentum planes embedded in the 4D cotangent manifolds. The signature of this noncommutativity is reflected in the derivation of the first-order Lagrangians where we exploit the most general form of the Legendre transformation defined on the (non-)commutative (co-)tangent manifolds. The second-order Lagrangian, defined on the 4D tangent manifold, turns out to be the same irrespective of the noncommutativity present in the 4D cotangent manifolds for the discussion of the Hamiltonian formulation. A connection with the noncommutativity of the dynamics, associated with the quantum groups on the q-deformed 4D cotangent manifolds, is also pointed out.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singlet scalar dark matter in noncommutative space

In this paper, we examine the singlet scalar dark matter annihilation to becoming the Standard Model particles in the non-commutative space. In the recent decades, many candidates of dark matter have been offered,  but our information about  the nature of dark matter is still limited. There are such particle candidates as  scalar matetr, fermion, boson, gauge boson, etc.; however, they have nei...

متن کامل

محاسبه سطح مقطع پراکندگی برهمکنش‌های γ e → e νν‾ و γγ→νν‾

 We study processes in which neutrinos can be generated as a possible source for the neutrion emission form neutron stars. In the high energy limit and in the range em< E< Mw the cross sention for ye→evv  is analytically calculated. We also calculate the cross section for yy→vv  in the noncommutative space. The obtained results in comparison with the cross section for yy→vv  and yy→ yvv  in the...

متن کامل

ضریب گشتاور مغناطیسی لپتون باردار در فضا- زمان ناجابه‌جایی

 The g-factor of the charged leptons has always been considered by many physicists, both experimentaly as well as theoretically. In fact the electron and muon g-factor play the main role in testing the QED as well as the standard model. Meanwhile, there is a discrepancy between the standard model prediction of the muon anomalies magnetic moment and its experimental determination as large as (25...

متن کامل

A Note on Noncommutative and False Noncommutative Spaces

We show that the algebra of functions on noncommutative space allows two different representations. One is describing the genuine noncommutative space, while another one can be rewritten in commutative form by a redefinition of generators. Noncommutative geometry (for a recent review see e.g. [1]) plays an important rôle in both string theory, since it provides a tool for description of brane d...

متن کامل

گذار نیمه‌لپتونی B در فضا - زمان ناجابه‌جایی

 In this paper, we study the noncommutative effect on the semileptonic transition of B Ò Dlv . We replace the weak interaction vertex in the ordinary space with its counterpart in the noncommutative space. It is shown that, more new form factors are needded to describe the hadronic part of the transition amplitude. All the form factors are obtained at the lowest order of three point QCD sum rul...

متن کامل

An Explicit Viscosity Iterative Algorithm for Finding Fixed Points of Two Noncommutative Nonexpansive Mappings

We suggest an explicit viscosity iterative algorithm for finding a common element in the set of solutions of the general equilibrium problem system (GEPS) and the set of all common fixed points of two noncommuting nonexpansive self mappings in the real Hilbert space. &nbsp;

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003